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Resumen— We propose a passivity-based model-free second
order sliding mode control law to track desired humanoid
posture and contact force trajectories. Desired posture tra-
jectories are generated in closed-loop by means of priority-
based inverse kinematics. At each instant of time, the resulting
humanoid posture is projected on the tangent subspace of the
contact manifolds. Overall, the proposed force-motion control
scheme accounts for the constrained dynamics in closed-loop
of underactuated and highly redundant mechanical systems
such as humanoids. Exponential convergence of posture and
contact force tracking errors is guaranteed. We successfully
verified in simulation the robustness of the controller with a
realistic dynamic model of HRP-2.

I. I NTRODUCTION

In humanoid robotics, a lot of research efforts have been
conducted to control the mobility of these anthropomorphic
mechanisms. It is worth commenting on the Resolved
Motion Rate Control schemes commonly carried out for
task prioritization purposes (Liégeois, 1977; Nakamuraet
al., 1987; Siciliano and Slotine, 1991; Giengeret al., 2005).
Normally, an array of operational tasks consisting of care-
fully designed arrangements of constraints is used. So-
phisticated least-squares minimization strategies have also
been developed in order to guarantee real-time solutions at
kinematic level (Kanoun, 2011). However, the generation of
dynamic humanoid motions needs to handle multicontact
interactions while keeping dynamic balance (Hyon and
Cheng, 2006; Sentiset al., 2010; Saabet al., 2011).

Probably, the most popular family of force-motion con-
trollers are based on (Raibert and Craig, 1981) and (Khatib,
1987) to construct a control law. In general, two manifolds
are used:a) the cotangent subspace defined by contact
constraints where operational forces belong; andb) its
tangent subspace of unconstrained joint velocities. Although
priority-based inverse dynamics effectively solves the prob-
lem, it demands extensive computation. This is mainly
due to the change of generalized joint coordinates to the
operational counterpart (Khatib, 1987).

Contrary to the whole-body passivity-based controller
presented in (Hyon and Cheng, 2006), the present work
takes advantage of efficient priority-based inverse kine-
matics (PIK) within a dynamic controller (see Figure 1).
The solution shapes the extended errors used to preserve
passivity and the energetic performance of the humanoid
robot in closed-loop. In contrast to our previous work on
cooperative redundant arms (Arechavaletaet al., 2010),

here, the control scheme is extended to the case of non-
inertial tree-like kinematic mechanisms subject to balanc-
ing. The salient feature of the proposed scheme is that we
construct the control law by purely kinematic operators
regardless the regressor. Moreover, it ensures exponential
convergence of joint position, velocity and force errors in
tracking regime. The remaining of this paper is organized as
follows. In Section II we derive the necessary operators for
modeling constrained humanoid motions. Then, in Section
III we define operational tasks within the PIK framework.
Section IV presents the force-motion control scheme. In
Section V representative simulation scenarios illustratethe
effectiveness of the proposed control framework. Finally,
we provide in Section VI some concluding remarks.

II. H UMANOID DYNAMICS

Humanoid robots are multi body systems with non-
inertial kinematic tree-like structure. The base frame is com-
monly attached to the pelvis and encodes the underactuated
degrees of freedom (dof). The arms, legs and head can be
seen as kinematic branches attached to the non-inertial base.
Lets define the configuration of the humanoid robot as

q ,

(

qb

qe

)

∈ CS

whereqb ∈ IR3 × SO(3) represents the base coordinates,
qe stands for the humanoid kinematic chains andn =
dim (CS). The equations of motion of a humanoid robot
can be written as:

H(q)q̈ + h(q, q̇) = STτ + τ c (1)

whereH(q) ∈ IRn×n is the symmetric, positive definite
inertial matrix,h(q, q̇) = C(q, q̇)q̇+D(·)q̇+g(q) contains
the Coriolis vectorC(q, q̇)q̇, the damping vectorD(·)q̇
expresses the inner dissipative energy of the system and
the gravity vector. The generalized external and contact
forces areτ and τ c, respectively. It is important to note
that S = [0 I] selects the actuated joints andq̈ should be
expressed as

q̈ ,

(

ν̇r

q̈e

)

∈ IRn

where νr = (vT ωT )T ∈ IR6 is the twist of the non-
inertial base,(v,ω) ∈ IR3 are the linear and angular
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Figura 1. Motion generation and control scheme. The motion generation is based on PIK and it gives the instantaneous joint and velocities coordinates
to be tracked by a passivity-based force-motion controller.

velocities respectively. Then, let us define the following
linear operator that mapṡqb 7→ νr:

Jx(ϑ) ,

[

I 0
0 Jϑ(ϑ)

]

(2)

whereI ∈ IR3×3 is the identity matrix andJϑ(ϑ) ∈ IR3×l

is uniquely defined as

Jϑ(ϑ) ,
1

2

[

[r1×]
∂r1
∂ϑ

+ [r2×]
∂r2
∂ϑ

+ [r3×]
∂r3
∂ϑ

]

(3)

knowing that R(ϑ) = [r1, r2, r3] ∈ SO(3) and ϑ ∈
IRl, l ≥ 3.

A. Contact forces

Lets recall the power transmission principleP = νTF

whereν is the twist at an operational point belonging to
the humanoid kinematic chains andF = (fT nT )T ∈ IR6

is the wrench (i.e. force and torque) acting exactly at the
same operational point. Therefore, the generalized contact
force given byexternal wrenches can be expressed as:

τ c = JT
c (q)F c (4)

where the contact Jacobian and force have the structure:

JT
c (q) ,

[

JT
c1
(q), ..., JT

cr
(q)

]

∈ IR6r×n

F c , (F T
c1
, ...,F T

cr
)T ∈ IR6r

such that the following expression holds:

νc = Jc(q)q̇ (5)

whereνc , (νT
c1
, ...,νT

cr
)T ∈ IR6r is the contact velocity.

Each JacobianJci(q) is computed as in (Dubowsky and
Papadopoulos, 1993) to mapq̇ → νci .

B. Constrained dynamics

The humanoid constrained dynamics with multiple con-
tact points is then formulated as

H(q)q̈ + h(q, q̇) = τ + JT
c (q)F c (6)

s.t. Jc(q)q̇ = νc (7)

When F c is directly measured from sensors, it can be
introduced in the nonlinear termh. However, for simulation
purposes (6)-(7) must be solved. Thus, by computing the
second derivative of (7) w.r.t. time, we rewrite the whole
system as

[

H −JT
c

−Jc 0

](

q̈

F c

)

=

(

τ − h

J̇cq̇ − ν̇c

)

(8)

III. O PERATIONAL TASKS FOR MOTION GENERATION

Operational tasks are composed by linear equality and
inequality constraints. The former allows to reach a fixed
target and to maintain contacts while inequalities serve to
avoid collisions and joint limits but also to maintain the
projection of the humanoid center of mass (CoM) within
the supporting polygon defined on the floor1.

A. Posture tasks

To compute humanoid postures, we define equality tasks
of the form

e(q) = xd − f(q) → 0 (9)

where the desired operational target isxd andf(q) permits
to evaluate the current state of the task in terms of the robot
configuration. The exponential convergence ofe(q) can be
achieved bẏe(q) = −αe(q). The task Jacobian is obtained
by differentiating (9) w.r.t. time such that

J(q)q̇ = −αe(q) (10)

1Note that the humanoid CoM can be obtained from a ZMP reference.
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whereJ(q) ∈ R
m×n andm is the dimension of the task

space. Whenm < n, the null-space ofJ(q) associated
to e(q) is commonly used to solve additional secondary
tasks without altering the primary task. In this case, the
inverse mapping betweeṅe and q̇ is obtained by applying
the Moore-Penrose inverse as

q̇ = J+(q)ė+Q(q)znull (11)

where J+(q) = JT (q)
(

J(q)JT (q)
)−1

. The orthogonal
projection ofJ(q) is defined as

Q(q) , In − J+(q)J(q) (12)

which spans then − m-dimensional null-space ofJ(q)
and znull is an arbitrary vector. In general, a hierarchical
structure{e1(q) e2(q) . . . ep(q)} can be defined wherep
represents the task with last priority. This means that it is
possible to simultaneously solve as many operational tasks
as degrees of freedom (dof) are available.

B. Contact tasks

Contacts between the robot and the environment can be
considered as holonomic constraints of the form

ϕ(f(q)) = 0 (13)

where x = f(q) is the end-effector pose andϕ(·) ∈
IRr represents the geometry of smooth surfaces in the
environment. By differentiating (13) w.r.t. time, the contact
task Jacobian appears

Jϕ(q)q̇ = 0

whereJϕ(q) = Jϕx
(x)J(q) is composed by the constraint

JacobianJϕx
(x) ∈ IRr×6 and J(q) ∈ IR6×n is the

Jacobian at the contact point. Clearly,rank{Jϕ(q)} = r,
for r < n contact points. Then, it is possible to construct
an orthogonal projection ofJϕ(q) similar to (12) such that
rank{Qϕ(q)} = n − r. This allows to project secondary
posture tasks onto the tangent subspace of unconstrained
joint velocities defined by the null space ofJϕ(q).

C. Kinematic motion generation

The following recursion reported in (Siciliano and Slo-
tine, 1991; Baerlocher and Boulic, 2004) solves (10)-(11)
at priority level i:

q̇1 = J1(q)
+ė1 and

q̇i = q̇i−1 + (Ji(q)Qi−1(q))
+(ėi − Ji(q)q̇i−1)

(14)

Using the quadratic programing (QP) formulation suggested
in (Kanounet al., 2011), it is possible to cope with mixed
linear systems. In this case, the QP at priorityi is expressed
as

min
q̇

i
∈IRn

,w∈IRm

1

2
‖ wi ‖

2

s.t. ėli(q) ≤ Ji(q)q̇i −wi ≤ ėui (q)
¯̇eli−1(q) ≤ J̄i−1(q)q̇i ≤ ¯̇eui−1(q)

(15)

where the superscriptsl and u stands for the lower and
upper limits, respectively. Moreover

J̄i(q) =

[

J̄i−1(q)
Ji(q)

]

, ¯̇ei(q) =

[

¯̇ei−1(q)
ėi(q) +wi

]

forms a non-empty convex polytope that maintains the
solution of upper tasks. The outcome of (15), fori = 1 . . . p,
represents the instantaneous posture referenceq̇d. At this
stage, the idempotent property ofQϕ(q) can be used:

q̇d
, Qϕ(q)q̇

d (16)

This allows to unify the hierarchy of operational tasks by
projecting the solution of the finite set of posture tasks onto
the null space of the contact task JacobianJϕ(q).

IV. FORCE-MOTION CONTROL SCHEME

The objective of the proposed control scheme is to
ensure the robust behavior of a set of prioritized posture
and contact tasks for a humanoid robot. Fig. 1 illustrates
the main components as well as how they are connected.
The inputs are the desired profiles of operational forces
(contact tasks), the initial configuration of the robot and an
ordered array of posture tasks with priorities. The whole-
body motion is generated by means of the PIK solver.
Simultaneously, the controller guarantees the tracking of
force, generalized coordinate and velocity references,∆λ =
λ − λd, ∆q = q − qd and ∆q̇ = q̇ − q̇d respectively,
according to two error manifolds (i.e. operational force and
posture).

A. Lagrangian mapping and linear parametrization

From the constrained Lagrangian function commonly
defined asL = K − U + ϕT (x)λ together with (2), we
express thecontact wrench in (4) as

F c = J−T
x (x)JT

ϕx
(x)λ (17)

By applying the appropriate mappingνr 7→ q̇b through the
inverse of (2), it is straightforward to verify passivity for the
corresponding open-loop Lagrangian system. We then write
the equivalent Lagrangian system in terms of the following
linear parametrization

H(q)q̈ + h(q, q̇) = Y (q, q̇, q̈)Θ (18)

where the regressorY (q, q̇, q̈) ∈ IRn×l is composed
by known nonlinear functions andΘ ∈ IRl includes
the l unknown but constant dynamic parameters. Notice
that in (18) the generalized velocity vector is written as
q̇ ,

(

q̇T
b q̇T

e

)T
∈ IRn. From (18) and by defining

Yr(q, q̇, q̇r, q̈r), whereq̇r represents a nominal reference,
the open-loop error system is constructed

H(q)ṡ+ [C(q, q̇) +D(·)] s = τ + JT
ϕ (q)λ (19)

−Yr(·)Θ

wheres , q̇ − q̇r is called the extended error.
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B. Orthogonal nominal references

Lets consider

q̇r = Qϕ

(

q̇d − α∆q + sdp − kip

∫

sgn(sqp)dt

)

+J+
ϕ βsrF (20)

where β, α and kip are positive constant gains. Conse-
quently, the structure of the extended error variable is given
by

s = Qϕsrp − J+
ϕ βsrF (21)

where the joint (posture) error manifold is

sp = ∆q̇ + α∆q (22a)

sdp = sp(t0)e
−βpt (22b)

sqp = sp − sdp (22c)

srp = sqp + kip

∫

sgn(sqp)dt (22d)

and the force (contact) error manifold is

sF =

∫

∆λdt (23a)

sdF = sF (t0)e
−βF t (23b)

sqF = sF − sdF (23c)

srF = sqF + kiF

∫

sgn(sqF )dt (23d)

where,βp, βF , kiF are positive constant gains andsgn(·)
stands for the signum function.

C. The control law

The structure of the control law is

τ = −Kds+ JT
ϕ

(

−λd + ṡdF + kiF tanh(µsqF ) + ηsrF
)

(24)
whereKd ∈ IRn×n, µ and η are positive constant gains
and tanh(·) is the hyperbolic tangent function. Then, by
considering (19) and (24) the closed-loop system becomes

H(q)ṡ+ [C(q, q̇) +D(·) +Kd] s = τu + JT
ϕZF

−Yr(·)Θ (25)

where

ZF = ηsrF + ṡrF − sgn(sqF ) + kiF tanh(µsqF ) (26)

andτu is a virtual vector of generalized forces useful for
the passivity analysis of (25) whereτ u is the input ands
the output.

The stability proof relies on Lyapunov and second order
sliding mode arguments as follows. Consider the following
Lyapunov function

V =
1

2

(

sTH(q)s+ βsTrFsrF
)

(27)

By using the skew-symmetric property of Coriolis matrix,
i.e. ξ(Ḣ(q̇) − C(q̇, q))ξ = 0 ∀ξ 6= 0, the time derivative
of (27) is obtained

V̇ = −sT (D(·) +Kd)s− βηsTrFsrF − sTYr(·)Θ

+ sTKiFJ
T
ϕ (tanh(µsqF )− sgn(sqF )) (28)

Notice that the boundedness ofYr(·)Θ, Jϕ, Qϕ and the
tangent and sign functions yields to

V̇ ≤ −sT (D(·) +Kd)s− βηsTrFsrF+ ‖ s ‖‖ δ ‖ (29)

According to the Lyapunov analysis, large enough values
of Kd, β andη imply the asymptotic local convergence of
s to a region around the origin bounded byδ. This local
stability result ofs ensures the boundedness ofsrp andsrF
in the‖ · ‖∞ sense, such that‖ ṡrj ‖∞< δj , ∀ j = {F, p}.

Now, the sliding mode condition (Utkin, 1992) is verified
as follows

sTqj ṡqj = −kijs
T
qjsgn(sqj) + sTqj ṡrj

≤ −kij ‖ sqj ‖ + ‖ sqj ‖‖ ṡrj ‖

≤ (δj − kij) ‖ sqj ‖

Then for δj < kij a sliding mode onsqj = 0 is
established at timet ≤‖ sqj(t0) ‖ /(δj − kij). Therefore,
according with (22) and (23)sqj(t0) = 0 and, consequently,
there exists a sliding mode for all time. This result implies
that srj → 0 locally, which leads to the exponential
convergence of the tracking errors, i.e.∆λ → 0, ∆q → 0
and∆q̇ → 0.

V. SIMULATIONS

In order to compute the generalized acceleration and
contact forces in simulation we applied spatial algebra based
on extended rotation and translation operators. Note that
these operators permit to compute efficientlyJc(q), Jϕ(q)
and their time derivativeṡJc(q), J̇ϕ(q). In particular, the
Composite Rigid Body Algorithm (CRBA) (Featherstone
and Orin, 2000) allows us to evaluate the inertia matrix
H(q) and the nonlinear termsh(q, q̇). The balancing of the
robot is achieved by calculating the Jacobian of its center
of gravity (Sugihara and Nakamura, 2002), which is, in our
case, an inequality task to maintain the CoM within the
support polygon shaped by the contacts between the feet
and the ground. We derive the task Jacobian for obstacle
avoidance as reported in (Faverjon and Tournassoud, 1987).

For validating the proposed scheme, we designed two
scenarios in which the HRP-2 performs manipulation tasks
with massless objects, while simultaneously takes advantage
of its residual redundancy to maintain balance and to avoid
obstacles and joint limits. In both scenarios the robot does
not need to move its feet from their initial pose in order
to accomplish the global task. Also, the friction coefficient
between the feet and the ground is assumed to be infinite. It
is important to mention that the real geometric and dynamic
parameters of the HRP-2 robot are used. The current im-
plementation uses C++ with Blas and Lapack for numerical

D.R. © AMCA Octubre de 2012 493



−1

0

1

2

Jo
in

t p
os

iti
on

 (
ra

d)

E
rr

or
 N

or
m

s

0 50 100 150 200

−1

0

1

time (s)

Jo
in

t v
el

oc
ity

 (
ra

d/
s)

x 10−2

0

5

10
x 10

−4

P
os

iti
on

 (
ra

d)
0

1

2

3

V
el

oc
ity

 (
ra

d/
s)

x 10−2

0 50 100 150 200
−5

0

5

time (s)

F
or

ce
 (

N
m

)

x 10−1

0

5

10
x 10

−4

0

1

2

3
x 10−2

0 1 2
−5

0

5

time (s)

x 10−1

Figura 2. Top row: A sequence of snapshots representing the evolution of the first scenario: the HRP-2 transports a tray from underneath a desk to the
top of it. Second and third rows: left column, the joint and velocity profiles are shown.Last two columns: The position, velocity and force normal
errors are shown.

algebra operations and Matlab for control and visualization.
Fig. 2 illustrates how the robot transports an object from an
initial to a final pose, by applying the corresponding contact
forces on the object surface. The object is represented as
a rectangular tray with two cylindrical lugs and the global
task is to displace it from underneath a desk to a space
located over it, while avoiding collisions with all obstacles
in the environment. We assume that the humanoid hands
have already contacted the object. The hierarchical structure
of tasks for this scenario considers the following mixed
tasks:

Priority Equality Task Inequality Task

1 Poses of the feet CoM projection
2 Poses of the handsAvoid joint limits
3 Look at the object Avoid obstacles

The results are shown in Fig. 2. Observe that the global
task is accomplished successfully and the robot avoids the
collision between the tray and the desktop. Note that the
joint and velocity profiles are smooth and their values follow
closely the desired profiles. In Fig. ( 3) the humanoid is
pushing an object from one place to another by applying
the corresponding contact force on the object surface. The
robot exerts a predefined force on one of the lateral faces of
the telephone, note that this force is normal to the contact

surface. The assumptions are: the location and magnitude of
the force needed to slide the object is known and the desktop
surface is horizontal and therefore the gravitational force
does not affect the object displacement. The hierarchical
structure of tasks remains the same. The sequence of
snapshots shows the evolution of the global task along the
top row of Fig. (3). We observe that the humanoid is capable
to move the object over the desktop while maintaining its
balance. Also notice the robust tracking of the desired joint
and velocities profiles.

VI. CONCLUSION

We proposed a motion generation and control scheme
to deal with constrained humanoid motions. The controller
does not need to calculate any dynamic parameter to design
the generalized torque inputs to be applied to humanoids.
Moreover, the residual redundancy represents a key element
to design the desired joint velocity profiles based on a
task-priority framework. The current formulation accounts
for frictionless contact problems. Preliminary results show
that our scheme can be successfully applied in practice.
We are currently working on a formulation for computing
multi-rigid-body dynamics with frictional contacts which
is necessary to control the switches between free and
constrained motions.
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Figura 3. First row : A sequence of snapshots representing the solution of the second problem: the HRP-2 pushes a telephone over a desktop while
avoiding joint limits and maintaining its balance.Second and third rows: left column, the joint and velocity profiles are shown.Last two columns:
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